Basic information
Title: BKMR
Package Author: Jennifer F. Bobb
Website Author: Sunan Gao
Description: The R package bkmr
implements Bayesian kernel machine regression, a statistical approach for estimating the joint health effects of multiple concurrent exposures. Additional information on the statistical methodology and on the computational details are provided in Bobb et al. 2015. More recent extensions, details on the software, and worked-through examples are provided in Bobb et al. 2018.
Original R package came from Link
Deployed Website Link ### Customized things in pkgdown website
theme: breeze-light # using the "breeze-light" theme
bslib:
bg: '#F5F5F5' # Specifies the background color for the website.
fg: '#B8BCC2' # Specifies the foreground (text) color for the website.
primary: '#306cc9' # Specifies the primary color used for links and other elements.
navbar:
bg: primary # Sets the background color of the navigation bar
structure:
left: search # Places a search bar on the left side of the navigation bar.
right:
- reference
- articles
footer:
structure:
left: developed_by # Specifies content on the left side of the footer
right: built_with # Specifies content on the right side of the footer
Exported function list
ComputePostmeanHnew(): #Compute the posterior mean and variance of h at a
new predictor values
ExtractEsts(): #Extract summary statistics
ExtractPIPs(): #Extract posterior inclusion probabilities (PIPs) from
BKMR model fit
ExtractSamps(): #Extract samples
InvestigatePrior(): #Investigate prior
OverallRiskSummaries(): #Calculate overall risk summaries
PlotPriorFits(): #Plot of exposure-response function from univariate KMR
fit
PredictorResponseBivar(): #Predict the exposure-response function at a
new grid of points
PredictorResponseBivarLevels(): #Plot cross-sections of the bivariate predictor-response function
PredictorResponseBivarPair(): #Plot bivariate predictor-response function on a new grid of points
PredictorResponseUnivar(): #Plot univariate predictor-response function on a new grid of points
SamplePred(): #Obtain posterior samples of predictions at new points
SimData(): #Simulate dataset
SingVarIntSummaries(): #Single Variable Interaction Summaries
SingVarRiskSummaries(): #Single Variable Risk Summaries
TracePlot(): #Trace plot
kmbayes(): #Fit Bayesian kernel machine regression
print(<bkmrfit>): #Print basic summary of BKMR model fit
summary(<bkmrfit>): #Summarizing BKMR model fits
A basic example with one of the functions (fitkm).
library(bkmr)
library(ggplot2)
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 10000, verbose = FALSE, varsel = TRUE)
TracePlot(fit = fitkm, par = "beta")
ggplot(pred.resp.univar, aes(z, est, ymin = est - 1.96*se, ymax = est + 1.96*se)) +
geom_smooth(stat = "identity") +
facet_wrap(~ variable) +
ylab("h(z)")
Install instructions
You can install the latest released version of bkmr
from CRAN with:
install.packages("bkmr")
Or the latest development version from github with:
install.packages("devtools")
devtools::install_github("jenfb/bkmr")
For a general overview and guided examples, go to https://jenfb.github.io/bkmr/overview.html.
For examples from the software paper, please see